
Having Fun With SQL

Why Use SQL?

● SQL is used for data manipulation, definition and

administration

● Complex Analysis

● It is the most commonly used database language today

● Universal across all databases

Different Versions of SQL Databases

Retrieving Data from SQL

● Basic SELECT statement

● Limit data results

● Order your data results

● Assign Column Aliases

Retrieve All Records
SELECT * FROM CUSTOMERS

SELECT * FROM CUSTOMERS
FETCH FIRST 10 ROWS ONLY

Retrieve 10 Records

SELECT *
FROM CUSTOMERS
ORDER BY CITY ASC
FETCH FIRST 10 ROWS ONLY

Order by City - Ascending Order

SELECT *
FROM CUSTOMERS
ORDER BY CITY DESC
FETCH FIRST 10 ROWS ONLY

Order by City - Descending Order

SELECT *
FROM CUSTOMERS
ORDER BY CITY DESC, CMP_NME ASC
FETCH FIRST 10 ROWS ONLY

Order by City - Ascending and Descending

SELECT
 CUST_ID AS "CustomerIdentification"
, CMP_NME AS "CompanyName"
, CNT_NME AS "ContactName"
, CNT_TTL AS "ContactTitle"

FROM CUSTOMERS

Assigning columns an Alias

Why Join Tables Together?

● Combine Related Data

● Comparisons

● Lookups

Types of Joins

(INNER) JOIN: Select records that have matching
values in both tables.

Joining Tables Together - INNER JOIN

SELECT
 A.CUST_ID AS "CustomerId"
 , B.CMP_NME AS "CompanyName"
 , A.ORD_ID AS "OrderNumber"
 , A.ORD_DTE AS "OrderDate"
 , A.FRGHT "FreightAmount"

FROM ORDERS A
JOIN CUSTOMERS B ON B.CUST_ID = A.CUST_ID

Joining Tables Together - JOIN

LEFT (OUTER) JOIN: Select records from the first
(left-most) table with matching right table records.

Joining Tables Together - LEFT JOIN

SELECT
 A.CUST_ID AS "CustomerId"
 , B.CMP_NME AS "CompanyName"
 , A.ORD_ID AS "OrderNumber"
 , A.ORD_DTE AS "OrderDate"
 , A.FRGHT "FreightAmount"

FROM ORDERS A
LEFT JOIN CUSTOMERS B ON B.CUST_ID = A.CUST_ID

Joining Tables Together - LEFT JOIN

RIGHT (OUTER) JOIN: Select records from the
second (right-most) table with matching left table
records.

Joining Tables Together - RIGHT JOIN

SELECT
 A.CUST_ID AS "CustomerId"
 , B.CMP_NME AS "CompanyName"
 , A.ORD_ID AS "OrderNumber"
 , A.ORD_DTE AS "OrderDate"
 , A.FRGHT "FreightAmount"

FROM ORDERS A
RIGHT JOIN CUSTOMERS B ON B.CUST_ID = A.CUST_ID

Joining Tables Together - RIGHT JOIN

FULL (OUTER) JOIN: Selects all records that match
either left or right table records.

Joining Tables Together - FULL JOIN

SELECT
 A.CUST_ID AS "CustomerId"
 , B.CMP_NME AS "CompanyName"
 , A.ORD_ID AS "OrderNumber"
 , A.ORD_DTE AS "OrderDate"
 , A.FRGHT "FreightAmount"

FROM ORDERS A
FULL JOIN CUSTOMERS B ON B.CUST_ID = A.CUST_ID

Joining Tables Together - FULL JOIN

Aggregating Data

● Summarize Data

● Use Aggregate Functions

● Identify Patterns and Trends

SELECT
 A.CUST_ID AS "CustomerId"
 , COUNT(*) AS "NumberOfOrders"
 , COUNT(DISTINCT A.CUST_ID) AS "DistinctCountCustId"
 , SUM(A.FRGHT) AS "SumFreight"
 , MIN(A.ORD_ID) AS "LowestOrder"
 , MAX(A.ORD_ID) AS "HighestOrder"
 , AVG(A.FRGHT) AS "AverageFreight"
 , ROUND(AVG(A.FRGHT),2) AS "AvgFreightRound"
 , DEC(ROUND(AVG(A.FRGHT),2),15,2) AS "AvgFreightRound"

FROM ORDERS A
JOIN CUSTOMERS B ON B.CUST_ID = A.CUST_ID
GROUP BY A.CUST_ID, B.CMP_NME

Aggregating Data

SELECT
 A.CUST_ID AS "CustomerId"
 , B.CMP_NME AS "CompanyName"

 , SUM(A.FRGHT) AS “FreightAmount”
 , CASE
 WHEN SUM(A.FRGHT) > 600 THEN 'CHARGED OVER 600'
 WHEN SUM(A.FRGHT) < 400 THEN 'CHARGED LESS THAN 400'
 ELSE '' END AS "ChargeType"

FROM ORDERS A
JOIN CUSTOMERS B ON B.CUST_ID = A.CUST_ID
GROUP BY A.CUST_ID, B.CMP_NME

Aggregating Data - CASE STATEMENTS

SELECT
 A.CUST_ID AS "CustomerId"
 , B.CMP_NME AS "CompanyName"
 , SUM(A.FRGHT) AS "FreightAmount"
 , CASE WHEN SUM(A.FRGHT) > 600 THEN 'OVER CHARGED' ELSE '' END AS "ChargeType"

FROM ORDERS A
JOIN CUSTOMERS B ON B.CUST_ID = A.CUST_ID
GROUP BY A.CUST_ID, B.CMP_NME
HAVING SUM(A.FRGHT) > 600
ORDER BY A.CUST_ID

Aggregating Data - HAVING SUM

SELECT
 A.CUST_ID AS "CustomerId"
 , B.CMP_NME AS "CompanyName"
 , COUNT(*) AS "NumberOfOrders"

FROM ORDERS A
JOIN CUSTOMERS B ON B.CUST_ID = A.CUST_ID
GROUP BY A.CUST_ID, B.CMP_NME
HAVING COUNT(*) > 10
ORDER BY A.CUST_ID

Aggregating Data - HAVING COUNT

ROW, RANK and DENSE
● Enumerate results

● Ranking results based on partitioned column

SELECT
 ROW_NUMBER() OVER(ORDER BY A.CUST_ID) AS "RowCount"
 , A.CUST_ID AS "CustomerId"
 , B.CMP_NME AS "CompanyName"
 , A.ORD_ID AS "OrderNumber"
 , A.ORD_DTE AS "OrderDate"
 , A.FRGHT AS "FreightAmount"

FROM ORDERS A
JOIN CUSTOMERS B ON B.CUST_ID = A.CUST_ID
ORDER BY A.CUST_ID

Aggregating Data - ROW NUMBER

SELECT
 RANK() OVER(ORDER BY A.CUST_ID) AS "RankCustID"
 , DENSE_RANK() OVER(ORDER BY A.CUST_ID) AS "DenseRankCustID"
 , A.CUST_ID AS "CustomerId"
 , B.CMP_NME AS "CompanyName"
 , A.ORD_ID AS "OrderNumber"
 , A.ORD_DTE AS "OrderDate"
 , A.FRGHT AS "FreightAmount"

FROM ORDERS A
JOIN CUSTOMERS B ON B.CUST_ID = A.CUST_ID
ORDER BY A.CUST_ID

Aggregating Data - RANK and DENSE

Working with Strings

● Explore various functions to manipulate string results

Working with Strings Results - 1
 SELECT
 CMP_NME AS "CompanyName"
 , REGION AS "Region"
 , IFNULL(REGION,'NEED VALUE') AS "RegionWithNull"
 , COALESCE(REGION,'NOTHING') AS "DefaultToNothing"
 , CONCAT(CUST_ID,CMP_NME) AS "ConcatCompName"
FROM CUSTOMERS

Working with Strings Results - 2
 SELECT
 TRANSLATE(CMP_NME,' ','\/&*?+#;<>-",') AS "TranslateCompName1"
 , TRANSLATE(CMP_NME,'A','C') AS "TranslateCompName2"
 , REPLACE(CMP_NME,'A','Z') AS "ReplaceCompName"
 , CUST_ID||'-'||CMP_NME AS "CombinedCompName"
 , UPPER(CMP_NME) AS "CompanyNameUpper"
 , LOWER(CMP_NME) AS "CompanyNameLower"
FROM CUSTOMERS

Working with Strings Results - 3
 SELECT
 LENGTH(CMP_NME) AS "LengthCompanyName"
 , LENGTH(TRIM(CMP_NME)) AS "TrimmedCompanyName"
 , LEFT(CMP_NME,LENGTH(TRIM(CMP_NME))-1) AS "RemoveCharacterLeft"
 , SUBSTR(CMP_NME,1,2) AS "SubstringCompanyName"
 , LOCATE('Bon',CMP_NME) AS "CompaniesWithBon"
 , LOCATE('app',CMP_NME) AS "CompaniesWithapp"
FROM CUSTOMERS

Combining Data With UNION

● UNION combines the result sets of two queries.

● Column data types in the two queries must match.

● UNION combines by column position rather than column

name.

● UNION selects only distinct values. To allow duplicate

values, use UNION ALL

Combining Data With UNION ALL

SELECT

 A.ORD_YR AS "Year"
 , A.CUST_ID AS "CustomerId"
 , B.CMP_NME AS "CompanyName"

FROM ORDERS A
JOIN CUSTOMERS B ON B.CUST_ID = A.CUST_ID
GROUP BY A.CUST_ID, B.CMP_NME
UNION ALL
SELECT

 A.ORD_YR AS "Year"
 , A.CUST_ID AS "CustomerId"
 , B.CMP_NME AS "CompanyName"

FROM ORDERSH A
JOIN CUSTOMERS B ON B.CUST_ID = A.CUST_ID
GROUP BY A.CUST_ID, B.CMP_NME

Combining Data With UNION ALL Results

Various SQL examples

● Working with Dates

● Working with Subqueries

● Filtering results

● Review Year to Year comparison using WITH

Working with Dates - Convert CCYYMMDD to Date
 SELECT

 DATE(SUBSTR(CHAR(20170917), 1, 4) || '-'|| SUBSTR(CHAR(20171101),5, 2)
 || '-'|| SUBSTR(CHAR(20171101), 7, 2)) AS "CvtNumericCCYYMMDD"

 , DATE(SUBSTR(CHAR(20170917), 1, 4) || '-'|| SUBSTR(CHAR(20171101),5, 2) || '-'||
 SUBSTR(CHAR(20171101), 7, 2)) - 1 YEAR AS "CvtNumericCCYYMMDD-1Year"

 , TO_DATE('2017-09-17', 'YYYY-MM-DD') AS "CvtStringToDate-YYYY-MM-DD"

FROM sysibm.sysdummy1

Working with Dates - Convert Date to CCYYMMDD
 SELECT

 INT(REPLACE(CHAR(CURRENT DATE, ISO),'-','')) AS "CvtDateCCYYMMDD"
 , INT(REPLACE(CHAR(CURRENT DATE - 1 DAY , ISO),'-','')) AS "CvtDateCCYYMMDD-1Day"
 , INT(REPLACE(CHAR(CURRENT DATE - 1 MONTH, ISO),'-','')) AS "CvtDateCCYYMMDD-1Month"
 , INT(REPLACE(CHAR(CURRENT DATE - 1 YEAR, ISO),'-','')) AS "CvtDateCCYYMMDD-1Year"

FROM sysibm.sysdummy1

Subqueries - Filtering
 SELECT
 A.CUST_ID AS "CustomerId"

 , B.CMP_NME AS "CompanyName"
 , A.ORD_ID AS "OrderNumber"
 , A.ORD_DTE AS "OrderDate"
 , A.FRGHT AS "FreightAmount"

FROM ORDERS A
JOIN CUSTOMERS B ON B.CUST_ID = A.CUST_ID
WHERE A.ORD_ID IN (

SELECT ORD_ID
FROM ORD_DTLS AA
JOIN PRODUCTS BB ON BB.PROD_ID = AA.PROD_ID
WHERE PROD_NME = 'Tofu')

Subqueries - Year to Year Comparison
 WITH CurSales (CustomerId, CompanyName, CurrentFreightAmount)
AS (
SELECT
 A.CUST_ID
 , B.CMP_NME
 , SUM(A.FRGHT)
FROM ORDERS A
JOIN CUSTOMERS B ON B.CUST_ID = A.CUST_ID
WHERE YEAR(A.ORD_DTE) = YEAR(CURRENT DATE)
GROUP BY A.CUST_ID, B.CMP_NME
)

Subqueries - Year to Year Comparison

SELECT
 A.CustomerId AS “CustomerId”
 , C.CMP_NME AS “CompanyName”
 , SUM(B.FRGHT) AS "PreviousFreightAmount"
 , SUM(CurrentFreightAmount) AS "CurrentFreightAmount"
FROM CurSales A
LEFT JOIN ORDERS B ON B.CUST_ID = A.CustomerId
JOIN CUSTOMERS C ON C.CUST_ID = A.CustomerId
WHERE YEAR(B.ORD_DTE) = YEAR(CURRENT DATE - 1 YEAR)
GROUP BY A.CustomerId, C.CMP_NME

Subqueries - Year to Year Comparison
 WITH CurSales (CustomerId, CompanyName, CurrentFreightAmount)
AS (
SELECT
 A.CUST_ID
 , B.CMP_NME
 , SUM(A.FRGHT)
FROM ORDERS A
JOIN CUSTOMERS B ON B.CUST_ID = A.CUST_ID
WHERE YEAR(A.ORD_DTE) = YEAR(CURRENT DATE)
GROUP BY A.CUST_ID, B.CMP_NME
)
SELECT
 A.CustomerId AS “CustomerId”
 , C.CMP_NME AS “CompanyName”
 , SUM(B.FRGHT) AS "PreviousFreightAmount"
 , SUM(CurrentFreightAmount) AS "CurrentFreightAmount"
FROM CurSales A
LEFT JOIN ORDERS B ON B.CUST_ID = A.CustomerId
JOIN CUSTOMERS C ON C.CUST_ID = A.CustomerId
WHERE YEAR(B.ORD_DTE) = YEAR(CURRENT DATE - 1 YEAR)
GROUP BY A.CustomerId, C.CMP_NME

Working with Dates - Year to Year Comparison

The secret of getting ahead is getting started.

Mark Twain

