
@ericjooka© Copyright Trevor Perry 2017© Copyright Trevor Perry 2017

Performance Tuning
Back to Basics

Trevor Perry
FrescheThinker

@ericjooka

@ericjooka© Copyright Trevor Perry 2017

iProDeveloper Articles

@ericjooka© Copyright Trevor Perry 2017

•Performance-Tuning Basics
-January 2008

•System Values Tuning
-February 2008

•Subsystems and Memory Pools
-June 2008

•Work Management Configurations
-December 2008

•Tuning Out of the Box: The Silver Bullet
-August, 2009

iProDeveloper Articles

@ericjooka© Copyright Trevor Perry 2017© Copyright Trevor Perry 2017 @ericjooka

Optimum Performance

@ericjooka© Copyright Trevor Perry 2017

•You cannot make your system run any faster
•You can only allocate resources so that the system performs more efficiently
•Allocating resources
-Fewer visible performance spikes
- Improved response time
-Better throughput

• It may appear that the system is running faster, but it is just running better

What is Optimum Performance?

@ericjooka© Copyright Trevor Perry 2017

•Resources are available
•Resources are allocated to the tasks that need them
• Interactive response times are consistently good
•Batch jobs finish in a timely manner

•Balancing the workload according to the needs of the business

How do I achieve Optimum Performance?

@ericjooka© Copyright Trevor Perry 2017

• If memory is already being allocated poorly
•Purchasing additional memory means
-More memory will be allocated poorly
-The performance problem may temporarily appear to be resolved

•A better long-term solution is to configure according to your business needs

Remember

@ericjooka© Copyright Trevor Perry 2017© Copyright Trevor Perry 2017 @ericjooka

Performance Tuning
Basics

@ericjooka© Copyright Trevor Perry 2017

•Typical problems
-batch job taking longer to complete than expected
- temporary spike in interactive response time

•Performance problems have reduced significantly
-Someone manually changes a job's work management parameter
-Affects the tuning of the server

•Performance tuning on the fly is often a result of a lack of knowledge

Performance Issues

@ericjooka© Copyright Trevor Perry 2017

•Well balanced
•Properly address the business workload

Two Key Tenets

@ericjooka© Copyright Trevor Perry 2017

•Rule to increase timeslice
-15000 timeslice = 16 hours
-500 timeslice = 9 hours

•Timeslice settings can certainly have an impact on a server
•Changing one job at a time
-Unbalances the allocation of resources
-Causes performance problems

A Work Management Myth

@ericjooka© Copyright Trevor Perry 2017

•Every developer should have basic work management skills
-How work begins
-Routing entries
-How to set system values
-Connect shared pools to subsystems

•Learn these first
•Performance tuning becomes simple

Work Management Basics

@ericjooka© Copyright Trevor Perry 2017

•Every developer has his or her own theory about tuning
•Every performance tuning consultant or "expert" also has their own theory
• IBM has performance experts who will solve individual performance concerns

•People who can tune performance correctly
-Understand what is running on the server
• Applications
• Business load
-Understand the user requirements.

Business Resource Requirements

@ericjooka© Copyright Trevor Perry 2017

•Different types of work
- Interactive
-Batch
-Web
-Database connection

•Which applications are using what type of work and in what balance?

Business Resource Requirements

@ericjooka© Copyright Trevor Perry 2017

•Establish some basic goals
•Measure performance against those goals
•Plan and implement work management changes
•Measure the impact of those changes
•Repeat forever

•Unique to your business and workload

Methodology

@ericjooka© Copyright Trevor Perry 2017

•Traditional interactive jobs
- Maximum response time for a percentage of the work

•Nontraditional interactive jobs
-Response time for browser-based applications
-Response time for a .NET application that connects with web services

•Database access jobs
-Total time for a single transaction

•Batch jobs
-Throughput goal (specific number of batch jobs processed in a certain time frame)
-Specific batch job or a stream of batch jobs

•Other unique processing requirements

Establishing Goals

@ericjooka© Copyright Trevor Perry 2017

•Goals are unique to the workload that needs to be managed
•Key is to be specific
-The more specific the goals
-The easier it will be to measure the performance against these goals

•Review and update your goals regularly
-Processing requirements are rarely static
-Adding applications impacts workload and system balance

Establishing Goals

@ericjooka© Copyright Trevor Perry 2017

•A collection of historical data
•Avoid using resource-hungry green-screen commands
-Work with Active Jobs (WRKACTJOB)
-Work with System Status (WRKSYSSTS)
-Work with System Activity (WRKSYSACT)

•Use IBM i Navigator
-Collect data in 15-minute intervals
-Valid performance measurement without affecting system performance

Measuring Performance

@ericjooka© Copyright Trevor Perry 2017

• “All the information needed for the performance methodology that I advocate
can be collected with green-screen commands; however, the primary System i
management tool is iSeries Navigator, and it should be the main tool that you
use, especially because future releases will contain functions unavailable via
green-screen commands.”

What I said back then…

@ericjooka© Copyright Trevor Perry 2017

• “All the information needed for the performance methodology that I advocate
can be collected with green-screen commands; however, the primary System i
management tool is iSeries Navigator, and it should be the main tool that you
use, especially because future releases will contain functions unavailable via
green-screen commands.”

What I said back then…

@ericjooka© Copyright Trevor Perry 2017

•Carefully plan and document EVERY change
• Implement changes
-When the server is in a restricted state
-When the fewest users will be affected by the immediate changes

•Rarely change work management configuration on the fly
-A mix of like jobs with different run priorities, which causes imbalance

Work Management Changes

@ericjooka© Copyright Trevor Perry 2017

•Change only one work management parameter at a time
•Two or more separate changes
-Might cause one positive result and one negative result
-Won’t know which one was positive

•Understand what comprises a single work management change
-Shared pool sizes – one memory pool at a time
-Floor and ceiling limits - one memory pool at a time
-Run Priority attribute of a class object - all the class objects together

Once the methodology is underway…

@ericjooka© Copyright Trevor Perry 2017

•Three choices
-Reverse the change
-Make additional changes
-Stay put

•After maximizing the positive impact of a particular change
-Move on to the next work management change
-Repeat

Rinse and Repeat

@ericjooka© Copyright Trevor Perry 2017

•You cannot be an expert without knowing the business requirements
•Don't be reactive
•Tune for balance.
•You cannot make the server run faster
•You can improve throughput.

Remember

@ericjooka© Copyright Trevor Perry 2017© Copyright Trevor Perry 2017 @ericjooka

System Values Tuning

@ericjooka© Copyright Trevor Perry 2017

•Many resource-allocation system values affect performance
•Goal is: OS spends less time managing itself and more time managing work

System Values Tuning

@ericjooka© Copyright Trevor Perry 2017

•Set to Automatic Adjustment
•Never let your system be adjusted at IPL (i.e., system restart)
-Replaces a significant portion of your configuration with its own "guess”

•Some shops leave this turned off
-After their shared memory pool limits correctly established

Automatic Performance Adjustment (QPFRADJ)

@ericjooka© Copyright Trevor Perry 2017

•How much space the system allocates for managing system jobs
-QACTJOB = initial number of active jobs for which auxiliary storage

is allocated at restart
-QTOTJOB = minimum number of jobs for which storage

is allocated at restart
-QADLACTJ = additional number of active jobs for which auxiliary storage is

to be allocated when the initial number of active jobs at restart is reached
-QADLTOTJ = additional number of jobs for which auxiliary storage is to be

allocated when the initial number of jobs at restart is reached

Active and Total Job Settings

@ericjooka© Copyright Trevor Perry 2017

•At IPL, OS sets aside some working room for all the jobs that it will manage
-Uses the QTOTJOB value to determine how much working room to allocate

•As more work is performed, the number of total jobs might be exceeded
-Allocates more resources based on the QADLTOTJ value

•Cycle continues until the system is IPLed again

QTOTJOB and QADLTOTJ

@ericjooka© Copyright Trevor Perry 2017

•Determining the optimum settings for these system values is important
•Too small?
-OS has to spend time allocating a small amount of resources a lot
-OS spends a lot of time managing its own workspace and less time managing the work

•Too large?
-OS reserves too much workspace
-OS could be reserving resources that could be used to help work process efficiently

QTOTJOB and QADLTOTJ

@ericjooka© Copyright Trevor Perry 2017

• Use IBM i Navigator to find the current total job count and active job count
-Use your trend data
- Include heavy periods – Month end, etc.

• Set QTOTJOB and QADLTOTJ values
-OS allocates enough workspace to minimize the number of times it needs to allocate more

workspace

• Example (fictional numbers):
-100 jobs at 9:00 a.m., 150 jobs at noon, 200 jobs at 3:00 p.m., 50 jobs at midnight
-QTOTJOB = 125
-QADLTOTJ = 25
-OS has resources for all the jobs when the day starts
-OS will allocate more workspace three times each day

QTOTJOB and QADLTOTJ

@ericjooka© Copyright Trevor Perry 2017

•Active jobs may end without leaving the system
•Spooled files remaining can cause that job to be included in the total job count
•QSPLFACN = detach printer output after jobs have ended
-Default is set to keep spooled files attached to jobs
• Total job count includes every job that has a remaining spooled file

Active Jobs

@ericjooka© Copyright Trevor Perry 2017

•Reduce the number of spooled files remaining in your system
•Archive or offload them to a content management application
•Asking the OS to manage takes resources away from current work
•QRCLSPLSTG = automatically clean up unused printer output storage
•Requires an understanding of the pattern of the work on your system
•Find a balance
-Not spending a lot of time managing these internal data files
-Not wasting too much space on deleted spooled files
-Simple rule of thumb
• Large turnover of spooled files = smaller number of days
• Small number of spooled files with a low turnover rate = larger number of days

Printed Output

@ericjooka© Copyright Trevor Perry 2017© Copyright Trevor Perry 2017 @ericjooka

Subsystems
and Memory Pools

@ericjooka© Copyright Trevor Perry 2017

•Originally: System i Systems management Work Management
•Now: https://www-03.ibm.com/systems/power/software/i/management/

Work Management

@ericjooka© Copyright Trevor Perry 2017

•Originally: System i Systems management Work Management
•Now: https://www-03.ibm.com/systems/power/software/i/management/

Work Management

@ericjooka© Copyright Trevor Perry 2017

ibm.com/systems/power/software/i/management/

@ericjooka© Copyright Trevor Perry 2017

ibm.com/systems/power/software/i/management/

@ericjooka© Copyright Trevor Perry 2017

•Work is managed within subsystems using memory pools
•Must establish a correct combination of shared pools connected to subsystems
•Consider two things
-Running similar types of jobs together in subsystems
-Allocating enough memory to each job so it can run according to your methodology

Subsystems and Memory Pools

@ericjooka© Copyright Trevor Perry 2017

•Do you understand how to manage work in a subsystem?
•Do you know what a routing entry is?
•Do you get the relationship between a work entry and a routing entry?
•Are you familiar with a job's "routing step”?
•Where is the routing data identified for each job?
•Do you know the routing entry uses the routing data to assign the class?
•Do you know the class assigns the runtime priority and timeslice to the job?

Basics of Work Management

@ericjooka© Copyright Trevor Perry 2017

•Private pools
-Memory allocated for use on only one subsystem

•Shared pools
-Memory shared between multiple subsystems

Memory Pools

@ericjooka© Copyright Trevor Perry 2017

•First, identify all the jobs running on your system
•Next, define the jobs by their usage type and amount

Getting Started

@ericjooka© Copyright Trevor Perry 2017

•Normal interactive jobs and batch jobs
•Jobs running at different schedules
-month-end jobs, year-end jobs, one-time conversions, etc.

•Database connection jobs running to support various client applications
•Web server jobs – interactive and service-enabled
•All planned applications and expected growth in application use
•Backdoor applications
-A job queue that is used to submit "special" work?
-Unusual compiles
-One-time repair jobs
-Reports for executives

identify all the jobs running on your system

@ericjooka© Copyright Trevor Perry 2017

•Will require a detailed review of the performance data collected on your system
• It will take some time
•Attention to detail will make the difference
•Results will be true performance tuning

identify all the jobs running on your system

@ericjooka© Copyright Trevor Perry 2017

• Interactive 5250 jobs use short bursts of resources and need fast response
-High CPU usage and less database usage

•Basic batch jobs require extended access to database I/O
-Less CPU

•Web jobs may be similar to 5250 interactive jobs
•Database access requires different resource requirements
-Based on the connected application

•Group jobs by subcategory
-Time-zone groupings?
-Functional areas

Define the jobs by their usage type and amount

@ericjooka© Copyright Trevor Perry 2017

• List of groups of jobs similar in business need and resource requirements
•Each group can be managed together in a subsystem
- If the subsystem is stopped and started at any time
-All the jobs in that group will be affected in the same way at the same time

•Result is a complete list of potential subsystems

Define the jobs by their usage type and amount

@ericjooka© Copyright Trevor Perry 2017

•Next task is to make the list of subsystems smaller
•Fit the new groups into current subsystems where you can
•Balance the number of subsystems
-With the amount of time you can spend on managing them

Define the jobs by their usage type and amount

@ericjooka© Copyright Trevor Perry 2017

• It will take time to configure all the subsystems for the first time
•Configure new and change subsystems in a progressive manner
•Use a development partition to test these changes
-or

•Make changes one at a time
-Check for repercussions
-Reverse the change if needed

•Have patience
- It may take several days or weeks to complete this task

Configuring Work: Part One

@ericjooka© Copyright Trevor Perry 2017

•Decide which subsystems can share memory
•Small system example
-One pool for interactive
-One for batch
-One for everything else

•Larger system example
-Several pools for different batch subsystems
-One for all outside database access
-One for serving web applications
-One for all interactive jobs

Allocating Resources: Part One

@ericjooka© Copyright Trevor Perry 2017

•Provide memory pools within which similar type jobs are running
•Similar jobs means jobs that require similar types of resources
-A batch job with long database I/O should be run in a memory pool with other jobs

requiring long database I/O
• Interactive jobs requiring more CPU-bound activity with less database I/O should be run in a

separate memory pool

• Jobs running in a single memory pool will steal resources
-From other jobs in that memory pool as their resource needs grow
-Release resources to as needs diminish

Allocating Resources: Part One

@ericjooka© Copyright Trevor Perry 2017

• *MACHINE pool
• *BASE pool
• *INTERACT pool
• *SPOOL pool

The shipped configuration

@ericjooka© Copyright Trevor Perry 2017

•THE most important
•Where the operating system runs
•The smaller this memory pool, the slower the system will run
• If the pool is too large, memory is unavailable for the business
•Tune this pool so that its nondatabase faults are fewer than 10 per second
•Note this process may take some time
-As you adjust the minimum pool size up or down
-And review the results each time

*MACHINE pool

@ericjooka© Copyright Trevor Perry 2017

•System running well
•Work balanced
•Throughput within the goals
•Total CPU percentage remained below 45 percent
• Increased the minimum size of the machine pool memory
•CPU percentage was over 80 percent during peak times
•System appeared faster

Incorrect *MACHINE pool size

@ericjooka© Copyright Trevor Perry 2017

• Larger systems
-Start with a minimum machine pool of 7.5% of total system memory

•Smaller systems
•Start with a minimum machine pool of 12.5% of total system memory. Of course,
if you have a starting point inside that range, begin tuning at that point according
to the 10-faults-per-second rule.

Some observations

@ericjooka© Copyright Trevor Perry 2017

•The default memory pool where the majority of work is performed
•Used by the auto-tuner when it needs to draw or return memory
•Always a minimum amount of memory remaining in the *BASE pool
•You'll first tune by moving work out of the *BASE pool
- Into other shared and private pools

• If you plan to move most work out of *BASE
-Minimum *BASE pool size should be close to 5 percent of total system memory

• If you plan to run some work in the *BASE pool
-Minimum pool size may be over 10 percent of total system memory

*BASE pool

@ericjooka© Copyright Trevor Perry 2017

•Choose the remaining percentages by applying your business requirements
-Small system example - with a lot of 5250 applications

• 10 percent *MACHINE
• 10 percent *BASE
• 50 percent *INTERACT
• 20 percent batch
• 10 percent database
-Web server example

• 10 percent *MACHINE
• 25 percent *BASE (including interactive)
• 65 percent web

After *MACHINE and *BASE

@ericjooka© Copyright Trevor Perry 2017

•Simple rules
1. If a memory pool will be used by multiple subsystems

it must be a shared pool
2. If a memory pool is to be used by only one subsystem

you want that pool to be adjusted to increase when it needs more memory
you want that pool to be decreased when it needs less memory
it must be a shared pool

3. Those pools that are used by a single subsystem
and require a permanently fixed storage size
are candidates to be considered private pools.

Shared vs Private memory pool

@ericjooka© Copyright Trevor Perry 2017

•Your server has unique business requirements
• It is rare that two servers should have identical configuration
•Don't be concerned about being overly precise at this point
-You are creating a starting point
-From which you will conduct further performance tuning

Unique for you

@ericjooka© Copyright Trevor Perry 2017

•Auto tuner limits
-Based on minimum and maximum shared pool sizes

•Default minimums are very low
Default maximums are always set to 100 percent
-Auto-tuner will be working hard to constantly move memory around
- If a pool has a job requiring a large amount of memory

it is possible that without a ceiling, the system could become unbalanced

Floors and Ceilings

@ericjooka© Copyright Trevor Perry 2017

•Set the sizes for the *MACHINE and *BASE pools
-Minimums match your memory allocation
-Maximums should always be 100 percent

•All other memory pools
-Minimum sizes of each pool about 10 percent lower than your plan
-A reasonable maximum pool size to set a ceiling is important
• Set too low will affect performance
• Set too high will require the auto-tuner to overwork
• A rule of thumb is maximum ~=150 percent of the minimum pool size

•Note: you cannot assign more than 100 percent of your total memory
to the minimum shared pool sizes

Floors and Ceilings

@ericjooka© Copyright Trevor Perry 2017

•Get your list of shared and private pools
-With a minimum and maximum pool size for each shared pool

•Configure the work management of the system to match your list
•You might choose to establish this pool configuration all at once
-before or after a backup cycle where the system is in a restricted state.

•Or make the pool changes one at a time
-Preferably starting with the smaller pools first

Configuring Work: Part Two

@ericjooka© Copyright Trevor Perry 2017© Copyright Trevor Perry 2017 @ericjooka

Work Management
Configurations

@ericjooka© Copyright Trevor Perry 2017

•Your workload requirements are unique
•Your work management configuration needs to be unique
•Workload requirements can change at different times of any day, month, or year
•Provide several configurations for changing workloads

A Balanced Workload

@ericjooka© Copyright Trevor Perry 2017

•Certain server jobs run as prestart jobs
-QUSRWRK
-QSYSWRK

•Allocate a new shared memory pool
•Assign it to the subsystem
•Change the prestart job entry to use the new pool

Attending to Special Jobs

@ericjooka© Copyright Trevor Perry 2017

Tuning It Up

•Certain server jobs run as prestart jobs
-QUSRWRK
-QSYSWRK

•Configuration
- Initial number of jobs – default 1
-Threshold – default 1
-Additional number of jobs – default 2

@ericjooka© Copyright Trevor Perry 2017

Tuning It Up

•Certain server jobs run as prestart jobs
-QUSRWRK
-QSYSWRK

•Configuration
- Initial number of jobs – default 1
-Threshold – default 1
-Additional number of jobs – default 2

•DO NOT USE THE DEFAULTS

@ericjooka© Copyright Trevor Perry 2017© Copyright Trevor Perry 2017 @ericjooka

The Silver Bullet

@ericjooka© Copyright Trevor Perry 2017

•A common myth is that increasing the timeslice will make a job run 'faster’
• IBM tells us that the timeslice is
- "The maximum amount of processor time that the system allows the job to run

when it is allowed to begin”
•The resource in this case is the processor
•The time slice is the amount of time the processor works for a job
-A timeslice is not a resource
-A timeslice is an indication of how to use a resource

• Increasing the timeslice does not apply more resource

Faster! Faster!

@ericjooka© Copyright Trevor Perry 2017

• “The time slice indicates the amount of time needed for the job to accomplish
a meaningful amount of work....”

•What is a ‘meaningful’ amount of work?
- Interactive = the time between pressing Enter and the response being returned
• If your interactive program is written well

this amount of work is efficient and will not require a large amount of processing
• Jobs with interactive attributes tend to have smaller timeslices
-Batch = performing one transactionB
• Batch jobs are intended to be long running, and require lots of processing

their timeslices tend to be longer

• “Meaningful amount of work” will differ based on
-Job attributes, the application, the company requirements

Continuing…

@ericjooka© Copyright Trevor Perry 2017

• “When the time slice ends, the job waits while other queued jobs of the same or
higher priority are allowed to run (up to the time specified in their time slices);
then the job is given another time slice.”

• “While the job is using the processor, no other jobs can. The longer your job is
using the processor, the longer other jobs must wait for the processor”

•This refutes the myth of longer timeslices
• Increasing the timeslice of one job means
all the other jobs requiring processor time
will spend more time waiting

Continuing…

@ericjooka© Copyright Trevor Perry 2017

•System/38 and CPF shipped timeslice defaults
- interactive jobs = 2,000 milliseconds
-batch jobs = 5,000 milliseconds

•S/38 processors had an internal timeslice of 500 milliseconds
• IBM considered 2,000 milliseconds to finish a “meaningful amount of work”
•Current processors can run thousands of times faster
-How long does it take to do a “meaningful amount of work”?

Faster! Faster!

@ericjooka© Copyright Trevor Perry 2017

•A large amount of work to be done on a development system
•Evening 1
-Set my batch job to a timeslice of 15,000
-16 hours to run

•Evening 2
-Set my batch job to a timeslice of 15,000
-9 hours to run

Experiential Evidence

@ericjooka© Copyright Trevor Perry 2017

•A large amount of work to be done on a development system
•Evening 1
-Set my batch job to a timeslice of 15,000
-16 hours to run

•Evening 2
-Set my batch job to a timeslice of 15,000
-9 hours to run
-Another programmer decided to cripple my job and set my timeslice to 500

Experiential Evidence

@ericjooka© Copyright Trevor Perry 2017

•Types of jobs
-Processor bound jobs
- I/O bound jobs
-Jobs with mixed resource requirements

• Job counts
-One job running
-Many jobs competing

•End result disproved the myth
-The smaller the timeslices for all jobs on the system

the more balanced the performance

Timeslice Research

@ericjooka© Copyright Trevor Perry 2017© Copyright Trevor Perry 2017 @ericjooka

The Silver Bullet
Methodology

@ericjooka© Copyright Trevor Perry 2017

A. Monitoring
B. Configuration
C. Monitoring
D. Performance methodology enhancements

The Silver Bullet Methodology

@ericjooka© Copyright Trevor Perry 2017

•Collect a base set of performance data as a base point for comparison
•Multiple months will allow trends to be identified
•One month is a good base point
•Without a base point you cannot prove any change has taken place

A. Monitoring

@ericjooka© Copyright Trevor Perry 2017

• List all Class objects on your system (in use)
- Identify currently defined timeslice

•Decide upon a new value for every timeslice on every Class object
-Start with 10 percent of their current values
-Reduce the timeslice for interactive jobs from 2,000 to 200

batch jobs from 5,000 to 500
-Apply the same rule for all timeslices, but do not reduce any below a value of 200
- If a timeslice is set to over 5,000, reduce it to 500

• If you are feeling conservative, use a 50 percent reduction factor
- If positive, repeat the process with a second 50 percent factor

B. Configuration

@ericjooka© Copyright Trevor Perry 2017

•Your server is unique
•The values you use should be determined by your workload
• If you have a batch-heavy system
-Timeslices for batch should be treated with priority

• If you have long processing interactive jobs
-Timeslices for interactive should be treated with priority

•The workload requirements on your server will dictate the new values

B. Configuration

@ericjooka© Copyright Trevor Perry 2017

•Write two programs
-BEFORE: change the timeslice on all Class objects to their current values
-AFTER: change the timeslice on all Class objects to their new value

• In a system restricted state, run the AFTER program
-Changing ALL the timeslice values in the system together is important

• If you change the Class objects while the system is active
-Your system will be unbalanced until an IPL

or until the restricted state is reached and the system restarted

B. Configuration

@ericjooka© Copyright Trevor Perry 2017

• Monitor the users and their experience with the system
•The first place where you will uncover any negative impact
•You will not likely hear from the users about any positive impact
-Unless you solicit their experiences.

•NOTE: If you decide that the impact is too severe on your system
-Run the BEFORE program to reset all timeslice values

C. Monitoring

@ericjooka© Copyright Trevor Perry 2017

•Monitor the system for a week
•Compare that to the previous week
•Compare that to the same week in the previous month (or months)

C. Monitoring

@ericjooka© Copyright Trevor Perry 2017

• Add a rule to prevent changing the timeslice value on a Class object.
•Add a rule to prevent changing the timeslice value on any running job
•Add a rule to prevent changing the timeslice value on any queued job
•Add a check for all new Class objects
-For new applications, new software packages, etc
-Ensure they are changed to match the rest of the timeslices on the system

D. Performance Methodology Enhancements

@ericjooka© Copyright Trevor Perry 2017© Copyright Trevor Perry 2017 @ericjooka

The Conclusion

@ericjooka© Copyright Trevor Perry 2017

•Use a performance methodology
•Tune for balance and throughput
•Never change your configuration on the fly
•Monitor, monitor, monitor
•Change one thing at a time
•Repeat, repeat, repeat

The Tenets of Performance Tuning

@ericjooka© Copyright Trevor Perry 2017

•Establish a new performance regime for your company
•The end result is the best starting point for performance
•Follow the performance methodology rigorously
• If you encounter performance issues that required a
more detailed level of attention and work management configuration
- the consultant or the IBM rep will appreciate your diligence

The Tenets of Performance Tuning

@ericjooka© Copyright Trevor Perry 2017

• 95 percent of all performance issues are application program related

One Final Caveat

@ericjooka© Copyright Trevor Perry 2017

• 95 percent of all performance issues are application program related

•This is not a myth

One Final Caveat

@ericjooka© Copyright Trevor Perry 2017© Copyright Trevor Perry 2017 @ericjooka

What’s Next?

@ericjooka© Copyright Trevor Perry 2017

http://ibmsystemsmag.com/blogs/i-can/

@ericjooka© Copyright Trevor Perry 2017

Database Performance Tuning

@ericjooka© Copyright Trevor Perry 2017

• 95 percent of all performance issues are application program related

•This is not a myth

One Final Caveat

@ericjooka© Copyright Trevor Perry 2017© Copyright Trevor Perry 2017

Performance Tuning
Back to Basics

Trevor Perry
FrescheThinker

@ericjooka

