
Copyright Central Park Data Systems, Inc. 1

Charles Guarino

Looking Inside the Developer’s Toolkit:

Introduction to Processing XML with RPG
and SQL Too!

Central Park Data Systems, Inc.
@charlieguarino

About The Speaker
With an IT career spanning over 30 years, Charles Guarino has
been a consultant for most of them. Since 1995 he has been
founder and President of Central Park Data Systems, Inc., a New
York area based IBM midrange consulting and corporate training
company. In addition to being a professional speaker across the
United States and Europe, he is a frequent contributor of technical
and strategic articles and webcasts for the IT community. He is a
member of COMMON’s Speaker Excellence Hall of Fame and also
Long Island Software and Technology Network’s Twenty Top
Techies. In 2015 Charles became the recipient of the Al Barsa
Memorial Scholarship Award. Additionally, he serves as a member
of COMMON’s Strategic Education Team (SET) and is also a past
president and monthly Q&A host of LISUG, a Long Island IBM i
User’s Group www.lisug.org.
Charles can be reached at cguarino@centralparkdata.com.
LinkedIn - http://www.linkedin.com/in/guarinocharles
Twitter - @charlieguarino

Copyright Central Park Data Systems, Inc. 2

What We’ll Cover

• Essential Definitions

• XML – A First Look

• A Review of Parsers

• XML-INTO: A Closer Look

• XML-SAX: A Closer Look

• XML and SQL

• Wrap-up

ESSENTIAL DEFINITIONS

1) What is XML and why use it?

2) Parsers – Two types!

3) Well formed document

4) Where is XML typically stored on the IBM i?

Copyright Central Park Data Systems, Inc. 3

What We’ll Cover

• Essential Definitions

• XML – A First Look

• A Review of Parsers

• XML-INTO: A Closer Look

• XML-SAX: A Closer Look

• XML and SQL

• Wrap-up

If you are already familiar with HTML…

Copyright Central Park Data Systems, Inc. 4

Then XML will be a snap!

Document “citydata1.xml”

Copyright Central Park Data Systems, Inc. 5

What We’ll Cover

• Essential Definitions

• XML – A First Look

• A Review of Parsers

• XML-INTO: A Closer Look

• XML-SAX: A Closer Look

• XML and SQL

• Wrap-up

Examine the XML document.

Does it have a consistent structure, with repetitive
groups or many different structures, and/or complex
structures?

Will you know in advance how the XML is actually
formatted?

How will you be using the data?
Is it a particularly large document?

These important answers will direct you to which
parser to use.

Which RPG parser to use?

Copyright Central Park Data Systems, Inc. 6

DOM = Document Object Model

Allows an application to read and update
XML data directly in memory. In the
DOM implementation, data is moved into
arrays and data structures.
Programmers need to be sensitive to how
large an XML document is so as to not
exceed the available system storage.
Optionally, a ‘handler’ can be used to
deal with array overflow.

RPG implementation “XML-INTO”

The SAX parser walks (runs?) through
an entire XML document, one element
at a time, and returns control to the
handler as each new ‘event’ is
encountered. The complexity of the
document is not relevant.
Also, since system memory is not

consumed, the document size is not
relevant.

RPG implementation “XML-SAX”

SAX = Simple API for XML

Copyright Central Park Data Systems, Inc. 7

Where can you find sample XML? There are lots of
documents to be downloaded. Take this fairly simple one.

http://www.w3schools.com/xml/simple.xml

This complex XML document was computer-generated, 75 pages long.

This document contains over 150 different complex structures.
SAX is clearly the way to go!

Copyright Central Park Data Systems, Inc. 8

What We’ll Cover

• Essential Definitions

• XML – A First Look

• A Review of Parsers

• XML-INTO: A Closer Look

• XML-SAX: A Closer Look

• XML and SQL

• Wrap-up

Introducing…

XML-INTO !!!

• You need to know the structure format in advance

• Data is mapped into data structures

• Can parse an entire document at one time

• Can use an optional handler for every large documents

• Recommended for less complex structured documents

Copyright Central Park Data Systems, Inc. 9

When using XML-INTO, an XML editor can help you define
your data structures

It’s also helpful to use the “tag”, “data”, “tag” approach

Copyright Central Park Data Systems, Inc. 10

Our first XML parsing program “CITYDATA1G”

“Show in Table” view of parsed data as it resides in physical file CITYDATA1

Copyright Central Park Data Systems, Inc. 11

Nested data structure support is more efficient – time to modernize!!!

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_73/rzasd/freesubfi
eld.htm#freesubfield__nested

Nested data structures in action

Copyright Central Park Data Systems, Inc. 12

XML parsing program CITYDATA2G using a handler

Variations on a theme – not originally parse-able with RPG

A more typical XML example, where the element “state”
has associated attributes placed before the actual text data.
The text data found here is the actual state name.

Copyright Central Park Data Systems, Inc. 13

Google "xml-into countprefix rpg cafe"

datasubf

countprefix

Data sub fields

Copyright Central Park Data Systems, Inc. 14

Using option “countprefix” is more granular than
“allowmissing=yes”

Sample XML with namespaces – how do you deal with colons?

Source: http://www.w3schools.com/xml/xml_namespaces.asp

Copyright Central Park Data Systems, Inc. 15

RPG can still parse this with namespace support

ns = remove

ns = merge

Summary of XML-INTO %xml Options

Original V5R4 options
doc – XML file exists in a document (versus a datastring)
allowextra – don’t stop with error if undeclared tags are found
allowmissing – don’t stop with error if expected data is missing
path – specifies starting element where to start parsing XML document
case - (any, lower, upper) – specifies the case of the data elements to map
ccsid – (best, job, ucs2) – specifies which CCSID to use
trim – specified whether to include whitespace mapped into your variables

V6R1 PTFs, 7.1 and beyond
Datasubf – names the DS subfield to capture the text data
Countprefix – specifies the prefix for selected array fields where you need
to capture the number of elements return. Can replace allowmissiing=yes.

case (convert using *LANGIDSHR table, convert alphabetic characters)
Nested data structure support

ns (remove=only use matching subfield, merge=join namespace with subfield)
nsprefix declares prefix of new field to capture actual namespace

Copyright Central Park Data Systems, Inc. 16

What We’ll Cover

• Essential Definitions

• XML – A First Look

• A Review of Parsers

• XML-INTO: A Closer Look

• XML-SAX: A Closer Look

• XML and SQL

• Wrap-up

Introducing…

XML-SAX !!!

• You DO NOT need to know the structure format in advance.

• Data is mapped anywhere you want at runtime.

• Reads the document the same way we do,
left to right from top to bottom.

• Each new piece of encountered data is an event,
which is passed to an event handler.

• Recommended for more complex structured documents.

Copyright Central Park Data Systems, Inc. 17

This document contains both XML elements and attributes,
and the data is inconsistent. It is however well-formed.

The sax parser reads the same way you read a book;
one word at a time, left to right, top to bottom.

20 = Start_Document
25 = Version_InfoVersion 1.0
10 = Encoding_Decl UTF-8
9 = Doctype_Decl XMLFileIn
6 = Comment XML Order Export File V1.0
21= Start_Element XMLFileIn
5 = Chars *blank
21 = Start_Element OrderV2
5 = Chars *blank
21= Start_Element Attribute

2 = Attr_Name Name
4 = Attr=Chars Dealer

26 = End_Attr Name
5 = Chars 10912

13 = End_Element Attribute

Copyright Central Park Data Systems, Inc. 18

Tables SAXCTL and SAXDATA

SAXDATA is populated in program SAXPARSES and
processed sequentially in the P.O. creation program.

We already know which pieces of data we want to capture.
Each time the event handler is called, if the event code identifies one
of these known values, we capture it. Otherwise we simply ignore it.

SAXCTL
PROCESSED_PATH CHAR(20)
PROCESSED_DOC CHAR(20)
PROCESSED_FLAG CHAR(1)
PROCESSED_DATTIM TIMESTAMP

SAXDATA
XMLDATATYPE CHAR(20)
XMLDATA CHAR(256)
XMLDOCPATH CHAR(20)
XMLDOCNAME CHAR(20)

Program Listing SAXPARSES

Copyright Central Park Data Systems, Inc. 19

*XMLSAX debugging option

• The *XMLSAX debug option generates a special
array named _QRNU_XMLSAX into your program.
Since the SAX parser returns just a numeric value,
it is helpful to identify what each value represents.

• In the event handler we can test for each event
and take the appropriate action. We will capture
certain pieces of data, based on the event code
that is passed.

All possible sax event codes in data structure _QRNU_XMLSAX

Copyright Central Park Data Systems, Inc. 20

This is how the parsed data looks in file SAXDATA.
A second program will read these records sequentially and process the data.

21
2

4
5
13

Event Codes

Code snippet of how to process this captured sequential data

If datatype = ‘Attr_Chars’;
Select;
When data = ‘Dealer’;

flag = ‘Dealer’;
…

If datatype = ‘XML_Chars’;
Select;
When flag = ‘Dealer’;

dealerno = %trim(data);
When flag = ‘Homeowner’;

homeownerdata = %trim(data);
…

Sets flag

Map suitable data

Copyright Central Park Data Systems, Inc. 21

Parsed data shown in SAXDATA using Table View

What We’ll Cover

• Essential Definitions

• XML – A First Look

• A Review of Parsers

• XML-INTO: A Closer Look

• XML-SAX: A Closer Look

• XML and SQL

• Wrap-up

Copyright Central Park Data Systems, Inc. 22

Parsing XML
using SQL

Select a.* from XMLTABLE('Cities/CityData/MonthlyData'

passing(xmlparse(Document

Get_xml_file('/xmldocs/citydata2.xml')))

Columns CityName VarChar(30) Path '../CityName',

Region Varchar(30) Path '../Region',

Month varchar(20) path 'Month',

Low int path 'Low',

High int path 'High'

) as a;

New SQL functionality makes parsing XML a snap

Copyright Central Park Data Systems, Inc. 23

Running SQL Script in Navigator **

**To run Connection > Use Temporary JDBC settings
Set Isolation Level to Cursor Stability (*CS)

Add a SQL INSERT and you’ve got a working program!

Copyright Central Park Data Systems, Inc. 24

Generating
XML

using SQL

Table CUSTMAST contains 5 rows

Copyright Central Park Data Systems, Inc. 25

Program BUILDXML generates XML in the IFS

/xmldocs/custmast.xml

Copyright Central Park Data Systems, Inc. 26

IFS file parsed and converted back to DB2 rows

What We’ll Cover

• Essential Definitions

• XML – A First Look

• A Review of Parsers

• XML-INTO: A Closer Look

• XML-SAX: A Closer Look

• XML and SQL

• Wrap-up

Copyright Central Park Data Systems, Inc. 27

For Further Reading…

Be sure to visit IBM’s RPG Café wiki.

LOTS of good examples of using the native RPG parsers

along with information about other recent RPG

enhancements.

https://www.ibm.com/developerworks/ibmi/rpg/welcome

Wrap-up

• XML-INTO is appropriate for less complex complicated structures.

 XML parsing was first introduced into RPG at V5R4.

 It parses the XML data into data structures, therefore you MUST
know the names of the tags in advance.

 If you are missing tags – or – define too many tags in your data
structure and do not specify “allow-missing” or “allow-extra”
you will receive an RPG parsing error at run-time.

 PTF SI34938, which became available in early 2009 enhanced
XML-INTO, allowing it the ability to parse more complex XML
structures.

 Additional PTFs are now available to parse XML documents that
contain namespaces – read the PDF!

Copyright Central Park Data Systems, Inc. 28

Wrap-up (continued)

• XML-SAX is appropriate for any type of XML structure.

 It is an event driven parser, which reads your document the
same way you read a regular document – left to right, top to
bottom.

 An event handler is called for each event that is encountered.

 Along with each event is an event code.

 “Allow-missing” and “allow-extra” are meaningless to the SAX
parser since you do not pre-define your tags.

 You do not need to handle or capture the event code every time
the handler is called. Only capture what you need.

CITYDATA1 Table

CREATE TABLE XMLLIB/CITYDATA1

(CITYNAME CHAR (20) NOT NULL WITH DEFAULT,

REGION CHAR (20) NOT NULL WITH DEFAULT,

MONTHNAME CHAR (9) NOT NULL WITH DEFAULT,

LOW CHAR (3) NOT NULL WITH DEFAULT,

HIGH CHAR (3) NOT NULL WITH DEFAULT)

Copyright Central Park Data Systems, Inc. 29

CITYDATA2 Table

CREATE TABLE XMLLIB/CITYDATA2

(CITYNAME CHAR (20) NOT NULL WITH DEFAULT,

REGION CHAR (20) NOT NULL WITH DEFAULT,

MONTHNAME CHAR (9) NOT NULL WITH DEFAULT,

LOW CHAR (3) NOT NULL WITH DEFAULT,

HIGH CHAR (3) NOT NULL WITH DEFAULT)

SAXCTL Table

CREATE TABLE XMLLIB/SAXCTL

(PROCESSED_PATH FOR COLUMN PRCDOCPATH CHAR
(20) NOT NULL WITH DEFAULT,

PROCESSED_DOC FOR COLUMN PRCDOCNAME CHAR
(20) NOT NULL WITH DEFAULT,

PROCESSED_FLAG FOR COLUMN PRCFLAG
CHAR (1) NOT NULL WITH DEFAULT,

PROCESSED_DATTIM FOR COLUMN PRCDATTIM
TIMESTAMP NOT NULL WITH DEFAULT)

Copyright Central Park Data Systems, Inc. 30

SAXDATA Table

CREATE TABLE XMLLIB/SAXDATA

(XMLDATATYPE CHAR (20) NOT NULL WITH DEFAULT,

XMLDATA CHAR (256) NOT NULL WITH DEFAULT,

XMLDOCPATH FOR COLUMN DOCPATH CHAR (20) NOT
NULL WITH DEFAULT,

XMLDOCNAME FOR COLUMN DOCNAME CHAR (20) NOT
NULL WITH DEFAULT)

CUSTMAST Table

Copyright Central Park Data Systems, Inc. 31

Charles Guarino

Looking Inside the Developer’s Toolkit:

Introduction to Processing XML with RPG
and SQL Too!

THANK YOU !!!

